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An algebraic heat flux truncation model was derived for high-speed gaseous shear
flows. The model was developed for high-temperature gases with caloric imperfections.
Fluctuating dilatation moments were modelled via conservation of mass truncations.
The present model provided significant improvements, up to 20 %, in the temperature
predictions over the gradient diffusion model for a Mach number ranging from 0.02
to 11.8. Analyses also showed that the near-wall dependence of the algebraic model
agreed with expected scaling, where the constant Prandtl number model did not. This
led to a simple modification of the turbulent Prandtl number model. Compressibility
led to an explicit pressure gradient dependency with the present model. Analyses of
a governing parameter indicated that these terms are negligibly small for low speeds.
However, they may be important for high-speed flow.

1. Introduction
Algebraic truncation models provide a possibility for bridging resolved and

unresolved turbulence in the simulation of high-Reynolds-number turbulence. The
objective of this study was to further develop algebraic heat flux truncation models for
high-speed shear flows. Convective heat transfer has been the subject of considerable
investigation; as such reviews are available elsewhere, e.g. Kays & Crawford (1993).
A brief synopsis of the models of relevance to the present study is given here.
The turbulent heat flux qT

i is often approximated with a gradient diffusion model
qT

i = − μT h̃,i/PrT , where μT is the turbulent viscosity, h̃ is the mass-weighed mean
enthalpy and PrT is the turbulent Prandtl number. A limitation of this approach is
the inability to predict realistic values for all three components of the heat flux as
it aligns the scalar flux with the mean scalar gradient. Algebraic models based on
truncating the transport equation for the turbulent heat flux have been developed
to overcome this limitation (Wikstrom, Wallin & Johansson 2000). Launder (1988)
proposed a model by assuming that the heat flux was proportional to the production
times a time scale. The resulting constant density, constant specific heat, model is
given by qT

i = CT τu(τ
T
ikCpT̄,k − qT

k ūi,k). In this expression, CT is a constant (≈ 0.3), τu

is a relaxation time scale, τ T
ij is the Reynolds shear stress, Cp is the specific heat at

constant pressure, T̄ is the mean temperature, and ū is the mean velocity. Inclusion of
the second term on the right-hand side leads to essentially correct predictions of the
axial and transverse heat flux for pipe, jet and homogeneous shear flows (Launder
1988). The above models are often extended to high-speed flow, via Morkovin’s (1961)
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hypothesis. For the algebraic models, this extension implicitly assumes that both the
mean Favre enthalpy fluctuation h′′ and the fluctuating dilatation u′′

k,k are negligible.

2. Governing equations
Most high-speed simulations are based on the Favre (1969) averaged conservation

equations. The two moments that require models are the turbulent shear stress
τ T
ij = − ρu′′

i u
′′
j and heat flux qT

i = ρh′′u′′
i ; this is, the case when the turbulent kinetic

energy kT = 1
2
u′′

i u
′′
i equation is combined with the averaged static energy equation

to eliminate the dissipation and pressure fluctuation terms, and the diffusion and
convection of kT are considered negligible in the resulting mean equation.

The present modelling was performed on the energy flux ϑT
i = ρe′′u′′

i transport
equation. This choice, over enthalpy, was based on the elimination of ambiguous
moments with the unsteady pressure. Taking moments between the energy and
momentum equations resulted in the following transport equation:

DϑT
i

Dt
= τ T

ik ẽ,k − ϑT
k ũi,k − p̄(u′′

i u
′′
k,k) − [(p′u′′

i ) + u′′
i p̄]ũk,k + p′e′′

,i − e′′ p̄,i + ρ̄ξi . (2.1)

In this expression, the left-hand side is DϑT
i /Dt ≡ ϑT

i,t + (ϑT
i ũk),k , the overbar

denotes a time-averaged quantity, the overtilde denotes a Favre averaged quantity,
the superscript T denotes a turbulence moment, the double and single primes denotes
a fluctuating quantity under Favre averaging and time averaging, respectively. The
variables are defined as follows: ρ is the density, ui is the velocity vector, p is
the pressure, τ̄ik is the molecular shear stress tensor, e is the internal energy, h

is the enthalpy and q̄i is the molecular heat flux vector. The triple correlations,
molecular, diffusion and dissipation terms are all grouped into ρ̄ξi . The physical
interpretation of the terms in (2.1) follows from Launder (1988). The exceptions
are the compressibility terms, specifically, the third, fifth and seventh terms on the
right-hand side. Simplifications to eliminate the pressure fluctuations were performed
using state equations.

For thermally perfect gases with caloric imperfections, the caloric equations of state
are functions of translational temperature. For many cases, C ′

v/C̄v � e′′/ẽ. Hence,
e′′ � C̄vT

′′, where C̄v is the value of the specific heat at the mean temperature T̃ .
Thus, the mean and fluctuating thermal equations of state reduce to

p̄ = (R/C̄v)ρ̄ẽ, p′ = (R/C̄v)(ẽρ
′ + ρe′′). (2.2)

3. Modelling simplifications
3.1. Simplifications to the energy flux transport equation

Equation (2.1) was simplified as follows. First, a model was derived for the velocity
dilatation by taking a moment of the fluctuating conservation of mass equation.
Neglecting unsteady and third-order terms, and simplifying with the identity ρ,ku

′′
i +

ρu′′
i,k = 0, resulted in ρu′′

i u
′′
k,k � −ρu′′

i u
′′
k ρ̄,k/ρ̄ + ũkρu′′

,k , where ũkρu′′
,k is expected to be

small for shear layers. Neglecting this term ensured Galilean invariance. The resulting
model is

ρ̄u′′
i u

′′
k,k � τ T

ik ρ̄,k/ρ̄. (3.1)

This relation is equivalent to the leading term in the Ristorcelli (1993) model.
Comparison of (3.1) to the Mach 2.25 adiabatic wall direct numerical simulation
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Figure 1. Supporting evidence for model simplifications. (a) Comparison of the present
velocity, energy and density dilatation models (3.1) and (3.9) to the DNS data of Pirozzoli,
Grasso & Gatski (2004), M = 2.25, Air, Tw/Taw = 1.0, Re = 4000; (b) Comparison of the
Reynolds stress correlations – model 1: (3.13), model 2: (3.14), normalized by the wall shear
stress, to DNS data; (c) Comparison of the modified turbulent Prandltl number (defined in
(3.15)) to the experimental data of Snijders, Koppius & Nieuwvelt (1983), Kays & Crawford
(1993), includes flat plate and pressure gradient data, and Horstman & Owen (1972).

(DNS) data, shown in figure 1(a), indicated the approximations were reasonable.
Second, the terms in the square brackets in (2.1) were reduced with the state equation
to

p′u′′
i = −p̄u′′

i + (R/C̄v)ϑ
T
i . (3.2)

Third, p′e′′
,i was estimated to be of second-order diffusion by using (2.2) to write

p′e′′
,i = R [ρ̄e′′e′′

,i + ẽρ ′e′′
,i+]/C̄v . The first term is a gradient of the energy variance. The

second term was also shown to be proportional to gradients of statistical moments by
approximating the internal energy and density fluctuations with a Taylor series, noting
that ρ ′e′′ = ρ ′e′ = −ρ̄e′′ and assuming that statistical moments were approximately
homogeneous. With this simplification, the incompressible pressure scrambling effect
(e.g. Launder 1976; Pope 1983) is omitted; the implication of this is discussed in § 3.4.
With these simplifications, (2.1) was written as

DϑT
i /Dt = τ T

ik (ẽ,k − p̄ρ̄,k/ρ̄) − ϑT
k ũi,k − (R/C̄v )ϑT

i ũk,k − e′′ p̄,i + ρ̄ξi . (3.3)

3.2. Algebraic energy flux model

An algebraic model for the energy flux was obtained by truncating (3.3) following
Girimaji & Balachander (1998). Defining an energy flux correlation coefficient
Fi = ϑT

i /[(ρ̄kT )1/2(ρ̄e′′2)1/2], neglecting ρ̄ξi , and performing the operations led to

ϑT
i /τϑ ≈ τ T

ik ψ̃,k − ϑT
k ũi,k − (R/C̄v)ϑ

T
i ũk,k − e′′ p̄,i , (3.4)

where

ψ̃,k = ẽ,k − p̄ρ̄,k/ρ̄
2 = h̃,k − p̄,k/ρ̄. (3.5)

In (3.4), τ−1
ϑ = 1

2
[(P kT −ρ̄ε)/ρ̄kT +(P e′′2

+ρ̄χ)/ 1
2
ρ̄e′′2], where P () denotes the production

and χ is the dissipation rate for the energy fluctuation variance e′′2. To build an
algebraic model, the system was further simplified by assuming that τϑ ≈ σϑkT /ε,
where σϑ was added as an adjustable constant. Thus, (3.4) was reduced to

aikϑ
T
k = bi, (3.6)
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where

aik =
[
τ−1
ϑ + (R/C̄v)ũm,m

]
δik + ũi,k, bi = τ T

ik ψ̃,k − e′′ p̄,i . (3.7)

Equation (3.6) was explicitly solved for ϑT
i . The determinant was approximated as

τ−3
ϑ for shear flows with a principal strain rate, which also helped with numerical

stability.
To account for the second term on the right-hand side of bi in (3.7), the following

transport equation was derived for e′′ from the conservation of energy

Dρ̄e′′/Dt = −ρ̄ẽ,ku
′′
k + ϑT

k,k − ρ̄u′′
ke

′′
,k − τ T

kl ũl,k − (p̄ρ ′u′′
k,k + ũk,kρ ′p′)/ρ̄ + M. (3.8)

On the left-hand side of this expression, Dρ̄e′′/Dt ≡ (ρ̄e′′),t +(ρ̄ũke′′),k . The production
and redistribution terms were listed on the right-hand side, and the molecular
fluctuation terms were grouped in M . The second and third terms on the right-
hand side were expressed as ϑT

k,k − ρ̄u′′
ke

′′
,k =ϑT

k ρ̄,k/ρ̄ + ρe′′u′′
k,k to second order, with

the product rule. To close the equation, energy and density dilation models were
derived following the arguments that led to (3.1); that is,

ρe′′u′′
k,k � −ϑT

k ρ̄,k/ρ̄, ρ ′u′′
k,k � u′′

k ρ̄,k. (3.9)

For the density dilatation, the fluctuating conservation of mass equation was
multiplied by ρ ′ and averaged. A comparison to the DNS data in figure 1(a) indicated
that these models were qualitatively correct. An algebraic model was derived for
(3.8) by recalling that ρ̄e′′ = −ρ ′e′′, which allowed for the definition of a correlation
coefficient. Performing the operations led to (ρ̄e′′) ≈ −[τ T

kl ũl,k + (ρ̄ẽ,k + p̄ρ̄,k/ρ̄)u′′
k]τe′′ ,

where ũk,kρ ′p′ and M were neglected. To close this term, the following truncation
model for the mean Favre velocity fluctuation was derived from the conservation of
momentum

Dρ̄u′′
i /Dt = −ρ̄ũk,iu

′′
k + ρu′′

i u
′′
k,k −

(
τ T
ik ρ̄,k − p′ρ ′

,i − τ ′
ki,kρ

′
)
/ρ̄ + Du, (3.10)

where the triple and diffusion terms are grouped in Du. The second and third terms
cancel under the assumptions that led to (3.1). Following the arguments that led to
(3.3), the fourth term was reduced to second-order diffusion. Since, all three terms in
this expression are diffusion, the algebraic truncation is (τu′′ ũk,i + δik)u

′′
k ≈ Du, where

Du denotes all of the second-order diffusion and third-order source terms. This result
suggested that the mean Favre fluctuation was of the order of diffusion for flows that
meet the assumptions leading to (3.1). Thus, neglecting this term in the mean energy
fluctuation equation resulted in the following expression for bi

bi = τ T
ik ψ̃,k + τ T

kl ũl,kp̄,iτe′′/ρ̄, (3.11)

where τe′′ ≈ σe′′kT /ε, and σe′′ is a mechanical non-equilibrium modelling constant.

3.3. Model constant σϑ

To set the constant σϑ , the model was examined in the logarithmic region of a
zero-pressure gradient turbulent boundary layer. For a boundary layer flow, where
the principal strain rate is given by ũ1,2, the model reduces to

ϑT
1 � τ T

12h̃,2τϑ − τ T
22h̃,2ũ1,2τ

2
ϑ ; ϑT

2 � τ T
22h̃,2τϑ . (3.12)

Combining (3.2) with qT
i = ϑT

i + p′u′′
i + p̄u′′

i resulted in qT
i = γϑT

i , where γ = C̄p/C̄v

which is a function of temperature. Thus, in the near-wall region, the energy equation
reduces to ϑT

2 ≈ qwall/γ . The time scale was estimated as τu = kT /ε ≈ μT /fμCμρkT ,
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where fμ is a near-wall correction and Cμ is a constant (= 0.09). This relation results
from the turbulence viscosity associated with k − ε models (Jones & Launder 1972).
The Bradshaw, Ferrie & Atwell (1967) model was used to further simplify the time
scale. The relation was multiplied by the van Driest damping factor d to extend the
applicability to the wall, i.e.

τ T
12 ≈ a1dρ̄kT . (3.13)

In the above relation, d = 1− e−x+
2 /A+

, x+
2 = ρwuτx2/μw , uτ = (τw/ρw)1/2 and A+ = 26.0.

This relation is compared to DNS data in figure 1(b). With this, τu ≈ a1d/fμCμũ1,2.

The gradient ψ̃,2 was evaluated in the logarithmic region as h̃,2 = − hτ/κT x2. Also, in
this region, ũ1,2 = uτ/κx2, and d and fμ are both � 1. Noting that hτ/uτ = qw/τw , then
the energy flux relation was reduced to ϑT

2 ≈ −(τ T
22/τw)(κ/κT )(a1σϑ/Cμ)qwall . The first

factor was written as −τ T
22/τw = 1/u′+2

2 , which is approximately constant at 0.75–0.85
within the logarithmic region (Barrett & Hollingsworth 2003). Thus, equating this

expression to qwall/γ resulted in σϑ ≈ (Cμ/γ a1)(κT /κ)(1/u′+2
2 ), where κT /κ ≈ 1.1–1.2

for gases and a1 = 0.27–0.30 for high-Reynolds-number boundary layers. With these
values, γ σϑ ≈ 0.25–0.32. Comparing with the Launder (1988) model, it is readily
seen that CT corresponds to γ σϑ . Hence, the present model is consistent with the
low-speed class of algebraic models for zero-pressure gradient flows with constant
specific heats.

3.4. Discussion of the model

The algebraic energy flux model described in § § 3.1–3.3 was developed specifically for
high-speed shear flows, where compressibility effects are explicit in the dilatation
models as shown in figure 1(a). The remaining simplifications translated into
neglecting inhomogeneous terms. For example, the state equation simplifications to
the pressure scrambling term resulted in the omission of an explicit sink term. Hence,
when the velocity is constant, aik reduces to τ−1

ϑ δik , and the energy flux dynamics are
controlled by the Reynolds stress model and the thermal gradients; this case was not
examined in detail here.

To better understand the differences between the present and gradient diffusion
models, the two were compared for boundary layer flows. The analysis was facilitated
by writing the turbulence viscosity as μT = fμCμτT

12τu/a1d; this relation stemmed
from the arguments in the previous section. Equating the two models led to
PrT = −(τ T

12/τ
T
22) (Cμ/γ σϑa1)(fμ/d). This expression was simplified with the following

empirical relation:

τ T
12/τ

T
22 ≈ −C/d, (3.14)

where C is a constant and d is the van Driest damping factor. The van Driest damping
factor was included to incorporate the correct near-wall asymptotic behaviour, that
is, u′′

1 ∼ x2 and u′′
2 ∼ x2

2 (Lai & So 1990). With this behaviour, τ T
12/τ

T
22 ∼ x−1

2 as x2 → 0.
The van Driest damping factor introduces the correct asymptotic behaviour near the
wall. The constant C is nominally 0.6–0.8 for a number of shear flows. A comparison
of (3.14) to DNS data, given in figure 1(b), demonstrated that the model produced
the correct behaviour across the boundary layer. For this comparison, C was set to
0.68. The second factor (Cμ/γ σϑa1) is a constant, which is near unity for diatomic
gases. Hence, a modified turbulent Prandtl number was derived as

PrT � Pr∞
T /dT , (3.15)
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where Pr∞
T ≡ CCμ/γ σϑa1, which is a constant in the range of 0.6–1.0 for diatomic

gases. The term in the denominator of (3.15) is given by quotient dT = d2/fμ. Since
fμ is an empirical function used to correct the eddy viscosity near the wall, it was
believed that this formulation may result in non-physical behaviour. Hence, the
following model was proposed: dT =1 − e−x+

2 /B+

, where B+ was selected at 12.0 to
fit the data in figure 1(c). Also, based on the comparison, Pr∞

T was set to 0.75. The
agreement between the model, labelled ‘Present theory’, and the data was considered
qualitatively good. Physically, these arguments suggest that the near-wall behaviour
of the gradient diffusion and algebraic truncation models differ. Specifically, q2 in the
gradient diffusion model goes as x3

2 as x2 → 0, where q2 goes as x4
2 for the algebraic

models. Applying a Taylor series to the enthalpy fluctuations in the near-wall region
indicates that the near-wall scaling of q2 goes as f1x

3
2 + f2x

4
2 (Abe & Suga 2000).

Since the prefactor f1 is proportional to the mean enthalpy gradient, the first term
is zero for adiabatic wall flows. The adiabatic wall DNS data of Pirozzoli et al.
(2004) confirmed the x4

2 dependency. Apparently, based on the comparisons in § 5,
the latter term scaling also prevails for flows with heat transfer. Modifying PrT via
(3.15) produces this behaviour.

Lastly, the Reynolds analogy was estimated for the present algebraic model as
2St/Cf � κT /κ , where the Stanton number and skin friction coefficient are given by
qw/ρeUe(hw − haw) and τw/ 1

2
ρeU

2
e , respectively. The observed range of κT /κ is 1.1–1.2,

which indicates that the present Reynolds analogy expression is consistent with a
large volume of empirical data across a wide range of speeds (e.g. see Cary 1970).

3.5. A Comment towards pressure gradient flows

To appreciate the role of the pressure gradient terms, the model was simplified for the
case of a two-dimensional variable pressure gradient boundary layer. The resulting
transverse energy flux is given by ϑT

2 � (τ T
22h̃,2 − τ T

12p̄,1/ρ̄)τϑ . To arrive at this form,
it was assumed that the principal strain rate ũ1,2 was much larger than the extra
strain rates and p̄,2 ≈ 0. The non-dimensional parameter B ≡ ρ̄−1p̄,1/h̃,2 was defined
to characterize the relative importance of the pressure gradient for this as well as
the other components. For many shear layer problems, B � 1. For example, B varied
from ∼ 10−5 to ∼ 10−3 for the largest pressure gradient studied by Huora & Nagano
(2006), corresponding to a Clauser (1956) pressure gradient parameter of 4.0. Hence,
the pressure gradient terms in (3.5) and (3.11) were assumed negligible for most
problems. A possible exception includes the strong gradients associated with high-
speed flow. Moreover, at hypersonic conditions, the thermal gradients are reduced as
the boundary layer thickness is increased with the Mach number. For the hypersonic
expansion study of Bloy (1975), B was crudely estimated at ∼ 0.1. Thus, the pressure
gradient limitations of the present model require further study and calibration of σe′′

requires a specifically designed high-Mach-number experiment.

4. Simulation methods
4.1. Physical models

The present algebraic model, (3.6), (3.7) and (3.11) with γ σϑ = 0.28; the modified
gradient diffusion model, (3.11) with Pr∞

T = 0.75, B+ = 12; the standard gradient
diffusion model, with PrT =0.9; and the algebraic models of Abe & Suga (2000)
(CT =0.4), Daly & Harlow (1970) (CT = 0.3) and Launder (1988) were examined.
Since the goal of the present study was the advancement of the heat flux model, the
test cases were limited to zero-pressure gradient flows, where an established two layer
model for the Reynolds shear stress (τ T

12 = μT ũ1,2) was available. In the inner region,
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the turbulence viscosity was computed with the Prandtl (1904) mixing length model
and the van Driest (1956) near-wall damping function, that is, μT

i = ρ̄κ2x2
2d

2ũ1,2.
In the outer region, the Clauser (1956) model was used with the Klebanoff (1955)
intermittency correction, that is, μT

o = CCρ̄Ueδ
∗
k · [1 + CK (x2/δ)

nk ]−1, where δ∗
k is the

kinematic displacement thickness. The model constants were set to established values
in the literature. Specifically, κ = 0.41, A+ = 26.0, CC = 0.018, Cμ = 0.09, a1 = 0.28,
C = 0.68, nK =6.0 and CK = 1.2 (this constant was re-tuned to match Pirozzoli et al.
2004 and Horstman & Owen 1972). The transverse normal stress τ T

22 was computed
from the Reynolds stress with the empirical model described in § 3.4; the quotient
d2/fμ was modelled as dT .

For the test cases presented here, the medium was air or helium. The air model
was based on a mole fraction composition of 78 % N2, 21 % O2 and 1.0 % Ar. The
temperature dependency of the specific heats was computed following Vincenti and
Kruger (1965). The viscosity was computed following Roy & Blottner (2006). The
molecular thermal conductivity was computed as k =Cp/Pr , where the molecular
Prandtl number Pr was set to 0.71. Helium was treated as a calorically perfect gas.
The viscosity was computed following Miller & Maddolon (1970). The molecular
Prandtl number was set to 0.69.

4.2. Finite difference models

The model assessment was performed using the two-dimensional boundary layer
equations (Prandtl 1904). An upwind finite difference scheme was used for the axial
x1 derivatives, and central differences were used for the transverse x2 derivatives.
To produce a stable solution, a downwind difference was used for the transverse
mass flux in the conservation of mass equation. Variable grid spacing was used. A
space-marching predictor–corrector solution procedure was employed, where for the
predictor step, the coefficients in the finite difference equations were evaluated using
the solution from the previous plane. For the corrector step, the coefficients were
evaluated with the results from the predictor step. The above algorithm was not fully
implicit, where treating the turbulence a source reduced the stability of the program.

The solutions were initiated with a parallel flow laminar similarity solution at an
axial location of 1.0 % of the plate length or the transition location if provided. This
was found to increase stability. An extrapolation boundary condition was used for
the upper boundary. For the lower boundary, a no-slip isothermal wall was enforced.
The solutions were marched until the predicted momentum thickness matched that
of the test case.

Grid convergence was ensured, where solutions were run on the following grids
7500 × 50, 15000 × 75 and 25 000 × 100. The maximum difference between solutions
on these grids was 0.25 %, which was deemed acceptable for the model comparison
studies. Consistency was validated with exact laminar similarity solutions, where
solutions agreed to within 0.3 %

5. Model evaluation results
The primary model development testbed was the DNS data of Pirozzoli et al.

(2004) shown in figures 2(a) and 2(b). The mean velocity profiles (figure 2a) for all
of the models were in excellent agreement with the data. The constant turbulent
Prandtl model temperature, Θ = (Tw − T̄ )/(Tw −T∞), results agreed well with the DNS
data in the outer region. However, in the region between x+

2 = 10 and 200, Θ was
underpredicted, where the largest difference was about 15 %. The temperature profiles
for the modified turbulent Prandtl and the four algebraic models were within 3 %
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Figure 2. Model comparison. (a) DNS data of Pirozzoli et al. (2004), M = 2.25, Air,
Tw/Taw =1.0, Re = 4000; (b) DNS axial and normal energy flux normalized by free stream
conditions (legend continued from (b), DE indicates model evaluated with DNS data directly);
(c) low-speed boundary layer with heat transfer (Barrett & Hollingsworth 2003 and Kays &
Crawford 1993); (d ) M= 11.8, He, Tw/Taw = 0.56, Re = 18 000 (Watson 1978).

of the DNS data across the entire boundary layer. Similar trends were observed
when evaluating the models for the Mach 2.8 adiabatic wall experiments described in
Bowersox (1996).

The comparisons of the modelled energy flux to the DNS data are given in
figure 2(b). In addition to the numerical simulations, the model formulations were
directly evaluated with the DNS data; these data are also included in figure 2(b).
Focusing on the DNS evaluations (labelled DE), the Abe & Suga (2000) and Launder
(1988) axial flux results agreed well with the data for x+

2 greater than about 100.
Below this region, the models did not capture the observed peak. Abe & Suga (2000)
showed slightly better results in this region as the model was adjusted to depend on
the axial shear stress. The Daly & Harlow (1970) model underpredicted the axial flux
across the boundary layer. Following the arguments in § 3.4, the near-wall scaling for
q1 goes as x3

2 for adiabatic wall flows. To achieve this scaling, the modelled axial

component for the present model was divided by 1 − ex+
2 /B+

1 , where B+
1 was selected

at 95 to capture the near-wall peak shown in figure 2(b). This factor asymptoted
to unity near x+

2 = 250. With this correction, the present model agreed well with the
data across the entire boundary layer. The corresponding numerical simulation axial
flux results shown in figure 2(b) followed the trends established by the DNS model
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evaluations. The differences between the models for the transverse component were
subtle, and the corresponding differences in the temperature profiles were the result
of the near-wall behaviour described in § 3.4. Similar agreement was seen for the
experiments in Bowersox (1996).

The present and gradient diffusion models were also compared to the low-speed
data of Barrett & Hollingsworth (2003) and Kays & Crawford (1993) in figure 2(c).
The velocity profiles for the three models were in excellent agreement with the
data. The present model temperature results were approximately 10 % higher than
the constant turbulent Prandtl model in the x+

2 = 10 and 200 region. However, the
experimental data spanned the model differences.

Lastly, the models were compared to the hypersonic data of Watson (1978) in
figure 2(d ). The constant turbulent Prandtl number model temperature predictions
were up to 20 % off in the x2/δ = 0.05 to 0.35 region of the boundary layer. The
temperature profiles with the present models were in much better agreement across
the entire boundary layer. Similar findings were observed for the Mach 7.1, Tw/Taw =
0.52 air study of Horstman & Owen (1972).

6. Conclusions
An algebraic truncation model was derived for high-speed shear layers. The model

appeared to provide significant improvements in the temperature predictions over
the constant turbulent Prandtl number model, when compared to experimental and
DNS data over a Mach number ranging from 0.02 to 11.8. The improvements, up
to 20 %, occurred in the x+

2 = 10 to 200 region of the boundary layer, and were
most pronounced in the supersonic and hypersonic boundary layers. Analyses of
the algebraic model resulted in a Reynolds analogy factor that was proportional to
the ratios of the slopes of the temperature and velocity profiles in the logarithmic
region of the boundary layer, which is consistent with numerous studies within the
literature.

The inclusion of compressibility led to explicit pressure gradient dependency with
the algebraic model. Analyses indicated that if B ≡ ρ̄−1p̄,1/h̃,2 is small then the
pressure gradient terms are negligible. For most flows, this parameter is very small,
however for high-speed flow, this term may become significant. Additional experiments
are required to better understand the pressure gradient limitations of the present
models.

The algebraic model produced accurate predictions of the heat flux vector as
compared to DNS results. An important inference from the analysis was that the
near-wall behaviour of the algebraic model for q2 agreed with expected scaling, where
the gradient diffusion model did not. This comparison led to a slight modification of
the turbulent Prandtl number. Specifically, PrT � Pr∞

T /dT , where Pr∞
T is a constant

near 0.75 and dT is similar the van Driest damping function. The resulting model
produced results that were in agreement with the algebraic model for the transverse
component of the heat flux.

The author thanks Dr Thomas Gatski for providing the DNS data from Pirozzoli
et al. (2004). Also, Dr Ravi Srinivasan is thanked for probing the DNS database.
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